Interaction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells
نویسندگان
چکیده
Shigella is a genus of highly adapted bacterial pathogens that cause bacillary dysentery in humans. Bacteria reaching the colon invade intestinal epithelial cells by a process of bacterial-directed endocytosis mediated by the Ipa proteins: IpaB, IpaC, and IpaD of Shigella. The invasion of epithelial cells is thought to be a receptor-mediated phenomenon, although the cellular components of the host that interact with the Ipa proteins have not yet been identified. We report here that in a Shigella flexneri invasive system and Chinese hamster ovary (CHO) cell monolayers, the Ipa proteins were capable of interacting directly with alpha5beta1 integrin. The invasive capacity of S. flexneri for CHO cells increased as levels of alpha5beta1 integrin were elevated. When CHO cells were infected with S. flexneri, the tyrosine phosphorylation both of pp 125FAK, an integrin-regulated 125 K focal adhesion kinase, and of paxillin was stimulated. In contrast, an isogenic strain of S. flexneri that was defective in invasion owing to a mutation in its spa32 gene failed to induce such phosphorylation. Under in vitro and in vivo conditions, the released IpaB, IpaC, and IpaD proteins bound to alpha 5 beta 1 integrin in a manner different from that of soluble fibronectin but similar to that of the tissue form of fibronectin. At the site of attachment of S. flexneri to CHO cells, alpha5beta1 integrin converged with polymerization of actin. These data thus suggest that the capacity of Ipa proteins to interact with alpha5beta1 integrin may be an important Shigella factor in triggering the reorganization of actin cytoskeletons.
منابع مشابه
rho, a Small GTP-Binding Protein, Is Essential for Shigella Invasion of Epithelial Cells
Shigella, the causative agents of bacillary dysentery, are capable of invading mammalian cells that are not normally phagocytic. Uptake of bacteria by the mammalian cells is directed by bacterial factors named IpaB, IpaC, and IpaD invasins, in which Ipa invasins secreted into the bacterial environment can interact with alpha5beta1 integrin. We report here that Shigella invasion of epithelial ce...
متن کاملNonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells.
A 31-kb fragment of the large virulence plasmid of Shigella flexneri is necessary for bacterial entry into epithelial cells in vitro. One locus of this fragment encodes the IpaA, -B, -C, and -D proteins, which are the dominant antigens of the humoral immune response during shigellosis. To address the role of the ipa genes, which are clustered in an operon, we constructed a selectable cassette t...
متن کاملEngineered and construction of pDS132::∆virG as suicide vector for targeted gene deletion of virG from Shigella flexneri 2a in order to generation a live attenuated Shigella vaccine
Background & Objective: Shigella are Gram negative bacteria capable of inducing their entry into non-phagocytic cells via secretion of various effector proteins called invasion plasmid antigens (Ipas). The most important of them is VirG protein. Live attenuated Shigella vaccines have indicated promise in inducing protective immune responses in human clinical trials. In current situation, const...
متن کاملCharacterization of invasion plasmid antigen genes (ipaBCD) from Shigella flexneri.
The large invasion plasmid of Shigella flexneri M9OT-W was used to generate recombinant plasmids carrying the ipaA, -B, -C, and -D genes, whose products are associated with the entry of the bacteria into colonic epithelial cells. Complete DNA sequences of ipaB, -C, and -D were determined. The proteins predicted (62, 42, and 37 kDa, respectively) from the nucleotide sequences lack a signal-pepti...
متن کاملMicrobes and microbial toxins: paradigms for microbial-mucosal interactions III. Shigellosis: from symptoms to molecular pathogenesis.
Interaction of Shigella flexneri with epithelial cells includes contact of bacteria with the cell surface and release of Ipa proteins through a specialized type III secreton. A complex signaling process involving activation of small GTPases of the Rho family and c-src causes major rearrangements of the subcortical cytoskeleton, thereby allowing bacterial entry by macropinocytosis. After entry, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 183 شماره
صفحات -
تاریخ انتشار 1996